

gerard.subsol@lirmm.fr

(4)

RINRIA

3D biomechanical simulation of a fossilization process of a bone structure New perspectives for the retrodeformation of paleo-anthropological fossils

G SUBSOL⁽¹⁾, P. DALOUS⁽²⁾, F. DURANTHON⁽²⁾, B. MORENO⁽³⁾, S. COTIN⁽⁴⁾, J. BRAGA⁽⁵⁾, J.P. JESSEL⁽⁶⁾

1. Designing a testbed to simulate the plastic deformation of a fossil bone structure with the help of B. AIELLO⁽²⁾ and B. GRANSAC⁽²⁾

 The bone structure (a rabbit femur) is plunged in a controlled acid solution. As a result, the dissolution of the mineral part softens it.
 The bone structure is then placed in the middle of a cylinder filled with silicon elastomer which simulates the surrounding sediments.
 A vertically controlled mechanical load is applied to the surface of the silicon cylinder during several days

 \rightarrow plastic deformation due to the weight of overlying sediments

After deformation

2. Developing algorithms to simulate and assess the 3D plastic deformation of a fossil bone structure with the help of B. COMBES⁽⁷⁾ and S. PRIMA⁽⁷⁾

SOFA Simulation Open Framework Architecture

J. Allard et al. "SOFA - an Open Source Framework for Medical Simulation". Medecine Meets Virtual Reality, 2007.

 \rightarrow 3D actual deformation vector field

- 2 elements:

bone

- silicone elastomer
- Linear elasticity

- Vertical constraint

A computer simulation is used. A virtual force is applied and the software efficiently calculates the 3D deformation. \rightarrow 3D simulated deformation vector field

3. Retrodeforming a fossil by 3D biomechanical simulation: a preliminary experiment with the help of B. GILLES⁽¹⁾, S. POTZE⁽⁸⁾ and F. THACKERAY⁽⁹⁾

STS52 (*Australopithecus africanus*, ~2.5 mya) is composed of a laterally compressed partial lower face and part of a mandible. The two parts do not fit one another.

- 2 elements:

- Linear elasticity

- bone (151,478 triangles)
 sediments
- Parameters roughly estimated
- Unique lateral constraint

→ fast 3D plastic retrodeformation

This research is supported by the French Center for Scientific Research (CNRS) through the exploratory research project PEPS/FOSSPROPALE and the French/South African project for scientific cooperation PICS/INLOO. We thank the South African Heritage Resources Agency and the French Ministry of Foreign Affairs (Kromdraai Archaeological Mission).